- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
Introduction Limites
Lors de l'étude des limites de fonctions, on peut s'inspirer de ce qui a été fait pour les suites. Une suite converge lorsque ses termes semblent se rapprocher d'une valeur. Les fonctions sont plus complexes que les suites car elles portent sur l'ensemble des réels, contrairement aux suites qui ne portent que sur les entiers. Les fonctions peuvent avoir différents types de limites, comme se rapprocher d'un réel, tendre vers l'infini ou osciller. On utilise un vocabulaire plus étendu lorsqu'on parle de limites de fonctions. Les limites peuvent être étudiées en l'infini, c'est-à-dire lorsque la variable tend vers l'infini, ou en un réel particulier. Il y a également des cas où il n'y a pas de limite. Des exemples graphiques sont utilisés pour illustrer ces différents cas. On introduit également la notion d'asymptote, qui est une droite vers laquelle la fonction semble tendre. Dans ce chapitre, nous étudierons les définitions et les exemples de limites, ainsi que les méthodes pour les calculer. Nous utiliserons l'analyse graphique, la factorisation et les définitions pour déterminer les limites. Il faudra aussi connaître les concepts d'asymptotes horizontales et obliques.