logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
    • Concours et examens US
      • Admission MIT
      • Admission Stanford
    • Concours et examens Français
    • Bac et examens étrangers
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
    • Concours et examens US
      • Admission MIT
      • Admission Stanford
    • Concours et examens Français
    • Bac et examens étrangers

x³-y³=2019 avec des entiers ?

Dans cette vidéo, l'objectif est de résoudre un exercice d'arithmétique qui prépare à l'entrée à Stanford. L'exercice consiste à trouver les valeurs des nombres entiers positifs x et y qui satisfont à l'équation x² - y² = 2019. Pour résoudre cette équation, il est conseillé de factoriser l'expression x² - y², qui est une identité remarquable connue en mathématiques. On peut simplifier x² - y² en (x - y)(x + y). Ensuite, l'idée est de chercher les diviseurs positifs de 2019 pour déterminer les valeurs possibles de x - y et x + y. On peut commencer par décomposer 2019 en facteurs premiers, par exemple en le divisant par 3. Ensuite, on vérifie si le reste de cette division par 3 est divisible par d'autres nombres premiers. On peut procéder en cherchant les diviseurs potentiels de 673 (ou de 2019) en utilisant des nombres inférieurs ou égaux à la racine carrée de 673. On constate que 673 est un nombre premier, donc on a deux choix possibles pour la décomposition de 2019 : 1 * 2019 ou 3 * 673. Ensuite, on résout un système d'équations en considérant les deux possibilités de décomposition de 2019. On cherche les valeurs de x et y qui satisfont aux équations x - y = 1 et x + y = 2019. On trouve que x = 1010 et y = 1009 pour la première décomposition, et que x = 338 et y = 335 pour la deuxième décomposition. Pour la seconde partie de l'exercice, il s'agit de trouver les entiers positifs x et y qui satisfont à l'équation x³ - y³ = 2019. Pour résoudre cette équation, il faut connaître une identité remarquable qui factorise x³ - y³. On utilise la décomposition en facteurs premiers de 2019 pour simplifier l'équation. On montre que l'expression x² + xy + y² est toujours plus grande que x - y. On pose un système d'équations en remplaçant y par x - 1, mais la résolution de ce système est plus compliquée. On vérifie si le discriminant du système est un carré parfait pour déterminer s'il existe des solutions entières. On trouve que le discriminant n'est pas un carré parfait, ce qui signifie qu'il n'y a pas de solutions entières pour l'équation x³ - y³ = 2019. On réalise le même processus pour l'autre décomposition de 2019, mais on obtient également la conclusion qu'il n'y a pas de solutions entières. En conclusion, il n'existe pas d'entiers positifs x et y qui vérifient l'équation x³ - y³ = 2019.

Contenu lié