logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
      • Oxford Imperial MAT
      • Cambridge
    • Concours et examens US
    • Concours et examens Français
    • Bac et examens étrangers
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
      • Oxford Imperial MAT
      • Cambridge
    • Concours et examens US
    • Concours et examens Français
    • Bac et examens étrangers
  • Filtre for math subjectRévisions Maths lycée

Aire entre deux courbes

En utilisant la méthode QCM, nous pouvons éliminer certaines réponses évidentes. Nous devons trouver l'air délimité par trois courbes : y = e^x, y = 1 - e^x et l'axe y. On nous demande la valeur de R, qui est une aire, donc positive. On peut remarquer que log(e) = 1 et que log est croissant. Donc, log(2) sera inférieur à 1 car e (environ 2.7) est supérieur à 2. Donc, R sera négatif et peut être éliminé. En faisant un dessin, on peut voir que l'aire R existe entre les courbes e^x, 1 - e^x et l'axe y. Donc, la réponse R = 0 peut également être éliminée. En reliant les courbes e^x et 1 - e^x, on trouve un triangle circulaire dont nous voulons trouver l'aire. Nous devons donc trouver les bornes de l'intégrale, en trouvant la valeur de alpha qui est le point d'intersection des deux courbes. En utilisant l'équation E^(2alpha) = 1 - E^(2alpha), nous trouvons que alpha est égal à -log(2). En substituant alpha dans l'intégrale de E^(2x) - E^(2alpha), nous obtenons R = 1 + alpha = 1 - log(2). Ainsi, nous avons trouvé la réponse recherchée.

Contenu lié