logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Suites et fonctions - Centres étrangers 2022

Cours sur les exponentiels et les suites: la partie exponentielle consiste en l'étude de fonctions. Nous examinons les limites en l'infini, en moins l'infini, zéro ou un certain nombre. Nous devons faire un tableau de variation, montrer des inégalités et résoudre des équations de tangente. Il y a également des limites de suite à examiner et des variations de suite à déterminer. Tout cela est nécessaire pour réussir l'examen du BAC. Dans la première partie de l'exercice, nous devons déterminer les limites de la fonction h(x) = e^x - x lorsque x tend vers plus l'infini et moins l'infini. En utilisant la méthode de factorisation, nous trouvons que la limite de h(x) en plus l'infini est plus l'infini et la limite de h(x) en moins l'infini est moins l'infini. Ensuite, nous devons étudier les variations de h et dresser son tableau de variation. En dérivant la fonction, nous trouvons que sa dérivée est positive lorsque x est positif et négative lorsque x est négatif. En utilisant ces informations, nous dressons le tableau de variation de h. La partie suivante concerne l'équation de la tangente à la courbe d'une fonction f au point d'abscisse 0. En utilisant les dérivées de f, nous déterminons que l'équation de la tangente est y = x + 1. Enfin, nous abordons la suite un = e^(1/n) - 1/n - 1 et déterminons sa limite qui est de 0. Nous devons ensuite démontrer que pour tout entier naturel non nul n, un+1 - un = h(1/(n+1)) - h(1/n). En utilisant les propriétés de h, nous montrons que cette égalité est vraie. Pour la dernière partie de l'exercice, nous utilisons un tableau de valeurs pour déterminer la plus petite valeur de l'entier naturel pour laquelle l'écart entre la tangente et la courbe de f est inférieur à 0,01. En regardant le tableau, nous trouvons que lorsque n est égal à 8, l'écart est inférieur à 0,01. En résumé, cet exercice porte sur les exponentiels et les suites. Nous devons déterminer des limites, étudier les variations de fonctions, résoudre des équations de tangente et examiner les variations de suites.

Contenu lié