logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
      Terminale
    • Physique
      • Mouvements et intéractions
      • Ondes et signaux
      • Conversions et transferts d'énergie
    • Chimie
    • MPSI/PCSI
    • Physique
    • Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
      Terminale
    • Physique
      • Mouvements et intéractions
      • Ondes et signaux
      • Conversions et transferts d'énergie
    • Chimie
    • MPSI/PCSI
    • Physique
    • Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Iceberg

Dans cette vidéo, nous étudions les forces appliquées à un iceberg flottant à la surface de l'eau. L'iceberg a un volume total V-ice et un volume immergé V-im. Les forces agissant sur l'iceberg sont le poids, dirigé vers le bas, et la poussée d'Archimède, dirigée vers le haut. Le poids de l'iceberg peut être calculé en utilisant la formule classique M x G, où M est la masse de l'iceberg et G est l'accélération due à la gravité. La masse de l'iceberg est déterminée en multipliant la masse volumique de la glace par le volume de glace immergé. Ainsi, le poids de l'iceberg peut être exprimé comme moins la masse volumique de la glace multipliée par le volume de glace immergé et l'accélération due à la gravité, dans la direction opposée à l'axe vertical (représenté par le vecteur unitaire EZ). La poussée d'Archimède est un peu plus complexe à calculer. Elle est donnée par moins la masse de fluide déplacé par l'iceberg, multipliée par l'accélération due à la gravité. La masse de fluide déplacé est égale à la masse volumique de l'eau multipliée par le volume immergé de l'iceberg. Ainsi, la poussée d'Archimède peut être exprimée comme moins la masse volumique de l'eau multipliée par le volume immergé de l'iceberg et l'accélération due à la gravité, dans la direction opposée à l'axe vertical. En effectuant les calculs numériques, nous obtenons que le poids de l'iceberg est égal à la poussée d'Archimède, ce qui explique pourquoi l'iceberg ne se déplace pas verticalement et reste en équilibre sur l'eau. En résumé, les forces appliquées sur l'iceberg sont le poids dirigé vers le bas et la poussée d'Archimède dirigée vers le haut. Le poids peut être calculé en fonction de la masse volumique de la glace et du volume immergé de l'iceberg, tandis que la poussée d'Archimède dépend de la masse volumique de l'eau et du volume immergé de l'iceberg. Le poids et la poussée d'Archimède sont égaux en grandeur, ce qui maintient l'iceberg en équilibre sur l'eau.

Contenu lié