- Tous les sujets
- Maths
- Nombres et calculs
- Nombres et Calcul numérique
- Intervalles et Inégalités
- Identités remarquables et équations
- Géométrie
- Repérage
- Vecteurs du Plan
- Droites et Systèmes d'équations
- Fonctions
- Généralités et Fonctions de Référence
- Variations et Extremums
- Signe et Inéquations
- Stats et Probas
- Proportions et Pourcentage
- Probabilités et échantillonage
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Probabilités Conditionnelles
- Variables aléatoires réelles
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Vecteurs et droites
- Produit scalaire dans l'espace
- Représentations paramétrique et cartésienne
- Probabilités (spé)
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Complexes : vision algébrique
- Complexes : vision géométrique
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
- Généralités sur les Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Physique
- Mouvements et intéractions
- Ondes et signaux
- Conversions et transferts d'énergie
- Chimie
- Composition et évolution d'un système
- Prévision et stratégie en chimie
- Physique
- Introduction
- Signaux physiques
- Induction
- Thermodynamique
- Chimie
- Architecture de la matière
- Réactions chimiques
- Solutions aqueuses
TerminaleMPSI/PCSI - Corrigés de BAC
- Bac Maths
- Géométrie
- Probabilités
- BAC 2021
- BAC 2024
- Bac Physique-Chimie
- BAC 2021
- BAC 2022
- Bac Maths
- BAC 2022
- Géométrie
- Probabilités
- BAC 2021
- Bac Physique-Chimie
- BAC 2021
- BAC 2022
TerminaleMPSI/PCSI - Prépa Examens
- Concours et examens UK
- Oxford Imperial MAT
- Cambridge
- Concours et examens US
- Admission MIT
- Admission Stanford
- Concours et examens Français
- Tescia
- Admission Polytechnique
- Bac et examens étrangers
Terminale - Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Vecteurs et droites
- Produit scalaire dans l'espace
- Représentations paramétrique et cartésienne
- Probas Terminale
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique Maths expertes
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes Maths expertes
MPSI/PCSI
Maths Spé
Analyse
Difficulté 2
a) Calculer J=∫015x2+2xdx b) Calculer I=21∫02π1+2sin(x)2cos(x)dx
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO
Maths Spé
Analyse
Difficulté 3
Calculer I=∫02xx2+2dx
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO
Maths Spé
Analyse
Difficulté 3
Veˊrifier que F est une primitivede la fonction f sur l’intervalledonneˊ. 1. sur R:f(x)=(3x+1)2 et F(x)=3x3+3x2+x 2. sur ]0;+∞[:f(x)=x32(x4−1). etF(x)=(x+x1)2
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO
Maths Spé
Analyse
Difficulté 3
Trouver les primitives desfonctions suivantes surl’intervalle I consideˊreˊ. 1.f(x)=x2−3x+1 sur I=R 2.f(x)=−x2 sur I=]0;+∞[ 3.f(x)=x32 sur I=]0;+∞[
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO
Maths Spé
Analyse
Difficulté 3
Trouver la primitive F de fsur I telle que F(x0)=y0 1.f(x)=x+x21I=]0;+∞[ et x0=1,y0=5. 2.f(x)=x2−2x−21I=R et x0=1,y0=0. 3.f(x)=x33x−1I=]0;+∞[ et x0=3,y0=2.
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO