- Tous les sujets
- Maths
- Nombres et calculs
- Nombres et Calcul numérique
- Intervalles et Inégalités
- Identités remarquables et équations
- Géométrie
- Repérage
- Vecteurs du Plan
- Droites et Systèmes d'équations
- Fonctions
- Généralités et Fonctions de Référence
- Variations et Extremums
- Signe et Inéquations
- Stats et Probas
- Proportions et Pourcentage
- Probabilités et échantillonage
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Probabilités Conditionnelles
- Variables aléatoires réelles
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Vecteurs et droites
- Produit scalaire dans l'espace
- Représentations paramétrique et cartésienne
- Probabilités (spé)
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Complexes : vision algébrique
- Complexes : vision géométrique
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
- Généralités sur les Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Physique
- Mouvements et intéractions
- Ondes et signaux
- Conversions et transferts d'énergie
- Chimie
- Composition et évolution d'un système
- Prévision et stratégie en chimie
- Physique
- Introduction
- Signaux physiques
- Induction
- Thermodynamique
- Chimie
- Architecture de la matière
- Réactions chimiques
- Solutions aqueuses
TerminaleMPSI/PCSI - Corrigés de BAC
- Bac Maths
- Géométrie
- Probabilités
- BAC 2021
- BAC 2024
- Bac Physique-Chimie
- BAC 2021
- BAC 2022
- Bac Maths
- BAC 2022
- Géométrie
- Probabilités
- BAC 2021
- Bac Physique-Chimie
- BAC 2021
- BAC 2022
TerminaleMPSI/PCSI - Prépa Examens
- Concours et examens UK
- Oxford Imperial MAT
- Cambridge
- Concours et examens US
- Admission MIT
- Admission Stanford
- Concours et examens Français
- Tescia
- Admission Polytechnique
- Bac et examens étrangers
Terminale - Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Vecteurs et droites
- Produit scalaire dans l'espace
- Représentations paramétrique et cartésienne
- Probas Terminale
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique Maths expertes
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes Maths expertes
MPSI/PCSI
Maths SM&SP
Algèbre
Difficulté 4
Soit (un) la suite deˊfinie par :u0=0 et∀n∈N,un+1=4un+1 1. Calculer u1,u2 et u3 2. Montrer que ∀n∈N,un+1et un premiers entre eux. 3. On pose ∀n∈N,vn=un+31a) Montrer que vn est geˊomeˊtrique.Raison et le premier terme ?b) En deˊduire l’expression de vnpuis de un en fonction de n. 4. Calculer PGCD(4n+1−1,4n−1)
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO
Maths SM&SP
Algèbre
Difficulté 3
Soit a et b deux entiersnaturels veˊrifiant a>b>0. Montrer que : PGCD(a,b)=a−b⟺∃k∈Z tel quea=(k+1)(a−b)et b=k(a−b)
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO
Maths SM&SP
Algèbre
Difficulté 5
On eˊtudie dans cet exercice lesnombres de Fermat.Le n-ieˋme nombre de Fermat estFn=22n+1, ouˋ n∈N 1. Montrer que pour tout n ettout k,Fn+k=(Fn−1)2k+1 2. En deˊduire que pour tout n∈Net pour tout k>0,Fn+k≡2[Fn] 3. Montrer alors que pour tout ndiffeˊrent de p,PGCD(Fn,Fp)=1 4. Aˋ l’aide de ce reˊsultat, deˊmon-trer qu’il existe une infiniteˊ denombres premiers.
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO
Maths SM&SP
Algèbre
Difficulté 1
Parmi les couples suivants,lesquels sont premiers entreeux ? (12;5);(39;25)(12;3);(36;15);(25;17)
COMMENCER L'EXERCICE
VOIR LA SOLUTION VIDEO