logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes

Majoration 'simple'

Ce cours est une transcription d'une vidéo qui traite de la démonstration par récurrence. L'objectif est de montrer que pour toute valeur de n appartenant à n étoiles, la propriété est vraie. La démonstration commence par l'initialisation avec n=1, où l'on obtient S1=1. Ensuite, on utilise l'hérédité en supposant que la propriété est vraie pour un certain n et en démontrant qu'elle est aussi vraie pour n+1. On utilise une inégalité pour montrer que Sn+1 est inférieur ou égal à 2-1/n+1. En utilisant des manipulations algébriques, on montre que l'inégalité est vraie et donc que la propriété est héréditaire. En conclusion, on peut affirmer que la propriété est démontrée pour tout n appartenant à n étoiles. Cependant, il est important d'écrire une conclusion pour éviter de perdre des points lors de l'évaluation.

Contenu lié