- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
Majoration 'simple'
Ce cours est une transcription d'une vidéo qui traite de la démonstration par récurrence. L'objectif est de montrer que pour toute valeur de n appartenant à n étoiles, la propriété est vraie.
La démonstration commence par l'initialisation avec n=1, où l'on obtient S1=1. Ensuite, on utilise l'hérédité en supposant que la propriété est vraie pour un certain n et en démontrant qu'elle est aussi vraie pour n+1. On utilise une inégalité pour montrer que Sn+1 est inférieur ou égal à 2-1/n+1.
En utilisant des manipulations algébriques, on montre que l'inégalité est vraie et donc que la propriété est héréditaire.
En conclusion, on peut affirmer que la propriété est démontrée pour tout n appartenant à n étoiles. Cependant, il est important d'écrire une conclusion pour éviter de perdre des points lors de l'évaluation.