logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes

Trop de puissance !

Ce cours concerne une suite définie par un terme initial u0 et une relation de récurrence. Le processus pour calculer les termes de la suite consiste en deux étapes : d'abord avoir une intuition du résultat en calculant u1, u2, u3, etc., puis démontrer cette intuition par récurrence. Pour cela, on écrit une formule générale basée sur les premiers termes de la suite et on la démontre. Dans cet exemple, on montre que la suite est égale à u0 puissance 2 puissance n. On commence par l'initialisation avec n=0, où la formule se simplifie à u0. Ensuite, on utilise la récurrence pour démontrer que Pn implique Pn+1. La démonstration de la récurrence dans cet exemple est assez simple, mais il est important de comprendre la méthode générale pour résoudre ce type d'exercice, en utilisant des intuitions, des essais de premiers termes et des démonstrations par récurrence. Ces compétences seront utiles non seulement pour le supérieur, mais aussi pour le bac.

Contenu lié