- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
Analyse graphique
Bonjour à tous ! Dans ce cours, nous allons aborder la notion des limites des fonctions à travers une analyse graphique. Nous examinons une fonction tracée et tentons de déterminer ses limites. Lorsque nous observons le graphique, nous constatons que lorsque x tend vers l'infini, la fonction tend vers 0. C'est notre première observation. Ensuite, lorsque x tend vers 0 par une valeur positive, nous remarquons que la courbe s'élève vers l'infini. Cela nous conduit à conclure que la fonction admet deux asymptotes, une verticale en x=0 et une horizontale pour les valeurs positives et négatives infinies. Lorsqu'on nous demande les équations des asymptotes, nous savons que les droites horizontales sont de la forme y=a, tandis que les droites verticales sont de la forme x=a. Dans ce cas, l'équation pour l'asymptote horizontale est y=0 et pour l'asymptote verticale, c'est x=0. Une remarque importante à faire est qu'on parle d'une droite comme étant l'asymptote d'une courbe et non de sa fonction. Enfin, il est tout à fait possible qu'une droite soit asymptote en deux endroits, comme c'est le cas ici où l'asymptote horizontale est présente pour les valeurs positives et négatives infinies. Voilà pour cette méthode d'introduction. Si vous avez des questions, n'hésitez pas à les poser.