logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens

Determiner une asymptote + étude

Dans ce cours, nous apprenons comment trouver les asymptotes d'une fonction. Les asymptotes peuvent être situées à moins l'infini, à plus l'infini, à la fois à moins l'infini et à plus l'infini, ou sur les bords de l'ensemble de définition de la fonction, là où il y a des valeurs interdites. Dans l'exemple donné, la fonction f(x) = -2/(1-x) est définie sur R privé de 1. Nous examinons les cas de moins l'infini et plus l'infini. Quand x tend vers moins l'infini, 1-x tend vers plus l'infini, et quand x tend vers plus l'infini, 1-x tend vers moins l'infini. Par quotient, nous concluons que f(x) tend vers moins l'infini en 0 et vers plus l'infini en 0. Nous en déduisons alors que la courbe CF a pour asymptote horizontale la droite d'équation y = 0, à moins et plus l'infini. Ensuite, nous examinons ce qui se passe en 1. Quand x tend vers 1 par valeur inférieure, 1-x tend vers 0 plus, et quand x tend vers 1 par valeur supérieure, 1-x tend vers 0 moins. Afin de confirmer cette tendance, nous pouvons choisir une valeur inférieure à 1, comme 0.1, où 1-0.1 est positif. Ainsi, 1-x tend vers plus l'infini en 1 par valeur inférieure. Nous pouvons également choisir une valeur supérieure à 1 pour vérifier. De ce fait, par quotient et en tenant compte du facteur -2, nous concluons que f(x) tend vers moins l'infini en 1 par valeur inférieure et vers plus l'infini en 1 par valeur supérieure. Lorsqu'il y a une valeur interdite, cela indique généralement une tendance vers plus ou moins l'infini, et nous avons alors une asymptote verticale. Ici, en x = 1, nous avons donc une asymptote verticale d'équation x = 1. En résumé, pour trouver les asymptotes, nous regardons les tendances en plus l'infini, moins l'infini et sur les bords de l'ensemble de définition de la fonction. Je recommande de vous entraîner à ces calculs et si vous avez des questions, consultez la FAQ.

Contenu lié