logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens

Encore un taux d'accroissement de exp

Ce cours porte sur le calcul de limites, avec un exemple particulièrement difficile : la limite de la fonction x exposant 1 sur x, moins x. Lorsque x tend vers l'infini, la fonction tend vers 1. Pour simplifier l'expression, on factorise par x, ce qui donne e de 1 sur x, moins 1. Cependant, cette simplification ne permet pas de résoudre l'indétermination de la forme. On utilise donc une astuce en posant x égal à 1 sur 1 sur x, ce qui donne e de quelque chose tendant vers 0, moins 1 sur quelque chose tendant vers 0. Cette limite est déjà connue et égale à 1. Ainsi, la limite de la fonction initiale est également égale à 1. Ce type d'exercice demande de repérer les formules et connaissances mathématiques spécifiques, afin de les appliquer de manière astucieuse pour obtenir la solution.

Contenu lié