logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens

On redécouvre le log ?!

Dans ce cours, on nous demande de déterminer les fonctions qui vérifient f2ab = f2a + f2b et f'(1) = 1. On remarque que la relation fonctionnelle du logarithme ressemble à cette équation. On va donc essayer de redémontrer certaines propriétés du log. Tout d'abord, on démontre que pour toute fonction f non nulle, il n'est pas possible de définir la fonction en 0. On suppose que cela est possible et on utilise la relation donnée pour trouver que f(0) = 0. Si on prend b = 0 et a non nulle, on obtient f(a) = 0. Donc pour tous les réels possibles, f est égal à 0. Cela contredit notre hypothèse de départ que f est non nulle. Donc la fonction ne peut pas être définie en 0. Ensuite, on montre que f(1) = 0. On remplace a et b par 1 dans la relation donnée et on trouve que 2f(0) = f(0), donc f(0) = 0. Enfin, on démontre que f(x/y) = f(x) - f(y). On remarque que cette équation ressemble à la démonstration de log(a/b) = log(a) - log(b). On réapplique la même méthode et on trouve que f(x/y) = -f(y). Cela nous permet de conclure que f(x/y) = f(x) - f(y). En résumé, on a montré que si une fonction vérifie f(2ab) = f(2a) + f(2b) et f'(1) = 1, alors cette fonction a toutes les propriétés du logarithme. On peut donc dire que ces deux conditions suffisent pour définir fondamentalement le log.

Contenu lié