logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens

Théorème fondamental : énoncé

Le théorème fondamental de l'analyse établit un lien entre la notion de primitive et l'intégrale d'une fonction continue et positive sur un intervalle donné. Selon ce théorème, si f est une telle fonction, alors la fonction F définie comme l'intégrale de f entre les points a et x est dérivable, et sa dérivée est égale à f elle-même. Ainsi, F est une primitive de f. Ce lien peut être visualisé à l'aide d'un graphique représentant une fonction parabole (x²) avec un signe négatif. En calculant l'aire sous la courbe, on constate que celle-ci varie en fonction des valeurs positives et négatives de la fonction. Plus précisément, l'aire augmente lorsque la fonction est négative et diminue lorsqu'elle est positive. Si la fonction est croissante, l'aire augmente rapidement, tandis que si elle est décroissante, l'aire diminue lentement. Lorsque la fonction atteint zéro, l'aire totale est également de zéro. Grâce à cette visualisation, il apparaît que la fonction bleue tracée sur le graphique, qui ressemble à une fonction cubique, présente des caractéristiques similaires à celles de la fonction verte (la fonction dérivée). En effet, la fonction bleue décroît lorsque la fonction verte est négative et croît lorsque la fonction verte est positive. Cela suggère que la fonction bleue peut être une primitive de la fonction verte. Cette visualisation peut être utile pour comprendre le lien entre la primitive d'une fonction et l'aire sous sa courbe. La démonstration formelle de ce lien sera présentée dans une vidéo ultérieure.

Contenu lié