logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Dérivée n-ième difficile

Dans ce cours, nous étudions la dérivée n-ième d'une fonction en utilisant la formule de Leibniz. Nous cherchons à trouver des relations récursives entre les dérivées n-ièmes successives. La question principale est de savoir à quoi ressemble la dérivée n-ième de la fonction f(x) = e^x + x^2. Nous voulons montrer que cette dérivée peut être exprimée sous la forme d'un polynôme Pn(x) = 1 + x^2)^n+1. Pour cela, nous utilisons une récurrence et nous essayons de trouver une relation entre Pn+1(x) et Pn(x) en utilisant la dérivée de Pn(x). Il s'avère que trouver directement Pn(x) est fastidieux, mais nous trouvons une relation en dérivant n fois la fonction f(x) et en simplifiant les termes. En utilisant la formule de Leibniz, nous trouvons une expression plus simple pour Pn'(x) en fonction de Pn-1(x). Après avoir initialisé la récurrence et montré l'hérédité, nous dérivons l'expression de Pn+1(x) et simplifions les termes. Finalement, nous obtenons une expression pour Pn'(x) en utilisant la formule de Leibniz. En dérivant l'expression n fois, nous trouvons que la dérivée n-ième de f(x) est égale à une somme de termes impliquant Pn(x), Pn-1(x) et Pn-2(x). En remplaçant les expressions de Pn+1(x), Pn(x) et Pn-1(x), nous obtenons une relation finale entre Pn'(x) et Pn-1(x). Bien que les calculs puissent paraître complexes, la formule de Leibniz avec des polynômes nous permet de simplifier les termes jusqu'à obtenir des relations claires entre les dérivées n-ièmes successives.

Contenu lié