- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
En l'infini
Dans ce cours, nous abordons les limites infinies. On dit qu'une suite "un" tend vers plus l'infini si, pour n'importe quel plateau A, il existe un rang n à partir duquel tous les termes de la suite sont supérieurs à A. Cela signifie que la suite peut dépasser n'importe quel plateau et continuer à croître. Cette idée est illustrée graphiquement avec une suite croissante basée sur la parabole x². On peut constater que pour n'importe quel plateau, comme 8 ou 50, il existe un rang à partir duquel tous les termes de la suite sont au-dessus de ce plateau. Nous appelons cela une limite vers plus l'infini. Pour la limite vers moins l'infini, nous utilisons une suite décroissante, l'inverse de la première. Encore une fois, on peut constater graphiquement que pour n'importe quel plateau, comme -45 ou 60, il existe un rang à partir duquel tous les termes de la suite sont en dessous de ce plateau. Cela signifie que la suite peut passer sous n'importe quel plateau. Nous appelons cela une limite vers moins l'infini. Il est important de comprendre ces concepts graphiques pour pouvoir les utiliser dans des exercices et méthodes classiques. Si vous avez des questions, n'hésitez pas à les poser dans la FAQ.