logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Limite avec A ou Ɛ

La vidéo traite de la définition formelle d'une limite mathématique en utilisant des exemples. L'objectif est de montrer comment ne pas avoir peur de cette définition et de la rendre compréhensible pour les étudiants qui continueront les mathématiques l'année suivante. L'exemple donné consiste à montrer que pour une suite donnée, Un=3n+2, il est possible de déterminer à partir de quel rang tous les termes de la suite sont supérieurs à un réel donné A. En traduisant la définition mathématique en français, on comprend que peu importe la hauteur du réel A, on veut montrer qu'à partir d'un certain rang n0, tous les termes de la suite dépassent cette hauteur. Pour résoudre l'équation 3n+2>A, on trouve que n>A-2/3. Puisque n doit être un entier naturel, on utilise la partie entière de A-2/3 plus 1, pour déterminer le plus petit entier n0 à partir duquel la propriété est vraie. La vidéo illustre également graphiquement cette idée, montrant que peu importe la hauteur de la barrière fixée (représentée par les réels A1, A2, A3), il existe toujours un rang à partir duquel tous les termes de la suite sont au-dessus de cette barrière. La définition formelle de la limite est ainsi présentée, soulignant que bien qu'elle puisse paraître complexe au début, elle devient plus simple à comprendre avec la pratique. La FAQ de la vidéo est également mentionnée pour toute question supplémentaire.

Contenu lié