- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Limite d'une somme géométrique
En résumé, ce cours explique que lorsqu'on a une somme à calculer, il est important de regarder les termes de la somme pour déterminer s'il s'agit d'une suite arithmétique, d'une suite géométrique ou autre. Dans ce cas précis, il s'agit de termes consécutifs d'une suite géométrique. En utilisant la formule appropriée, on peut calculer la somme en identifiant les valeurs des termes (u0=1, q=3) et en faisant attention au nombre de termes. La formule utilisée en l'occurrence est u0*(1-q^(nombre de termes))/(1-q). En simplifiant les calculs, on constate que la somme tend vers l'infini.