logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Continuité avec paramètres

Dans cette vidéo, Paul explique la continuité des fonctions. Il commence par étudier la continuité de la fonction f pour une valeur a donnée. Il décompose la fonction en plusieurs morceaux continus et vérifie qu'ils se raccordent correctement. Il conclut que la fonction f est continue si et seulement si a est égal à 0 ou 1. Ensuite, Paul examine la fonction g et cherche les valeurs des constantes α, β et γ pour lesquelles la fonction est continue. Il analyse les points de raccordement et utilise des équations pour déterminer les relations entre les constantes. Il trouve que f est continue si α + β = 1 et γ + β = 1. Il en déduit que α = γ et que β = 1 - γ. Ainsi, f est continue pour α, β, γ appartenant à l'ensemble (x, 1-x, x) pour x appartenant à R, où γ est libre et peut prendre n'importe quelle valeur réelle. En résumé, la vidéo explique les concepts de continuité des fonctions, examine la continuité de la fonction f pour différentes valeurs a, et détermine les valeurs des constantes α, β, γ pour lesquelles la fonction g est continue.

Contenu lié