logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Variations et théorème des valeurs intermédiaires

Dans cet exercice, nous étudions le tableau de variation d'une fonction polynomiale G dont la dérivée est G'(x) = 6x² - 6x. Nous dressons le tableau en calculant les limites et en cherchant les extrêmes locaux de G. Ensuite, nous devons montrer qu'il existe une solution alpha telle que G(alpha) = 0, avec alpha étant encadré entre -1 et 10^-1. Nous utilisons le corollaire du théorème des valeurs intermédiaires pour montrer qu'il existe une unique solution alpha sur l'intervalle (1, +∞). Nous pouvons également encadrer alpha à l'aide d'une calculatrice. Nous déterminons ensuite le signe de G(x) pour tout x réel en utilisant le tableau de variation précédent. Ainsi, pour tout x appartenant à (-∞, alpha), G(x) est strictement inférieur ou égal à 0, et pour tout x appartenant à (alpha, +∞), G(x) est supérieur ou égal à 0. Enfin, nous étudions la fonction f définie par f(x) = (1-x)/(x³ + 1) et nous calculons f'(x) en exprimant cette dérivée en fonction de G(x). Nous remarquons que le numérateur de f'(x) correspond à G(x), ce qui nous permet de déduire le signe de f'(x). Nous concluons que f est décroissante sur (-1, alpha) et croissante sur (alpha, +∞). C'est ainsi que se termine cet exercice sur l'analyse de fonctions. Rendez-vous la prochaine fois !

Contenu lié