- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Inégalités classiques !
Dans cette vidéo, nous avons abordé un exercice classique en mathématiques qui consiste à démontrer trois inégalités importantes. La première inégalité à démontrer est que pour tout x supérieur ou égal à 0, le sinus de x est inférieur ou égal à x. En étudiant les variations de la fonction sinus de x moins x, nous montrons que cette fonction est décroissante et atteint son maximum en 0. Ainsi, nous concluons que pour tout x dans R+, le sinus de x est inférieur ou égal à x.
La deuxième inégalité à démontrer est que pour tout x appartenant à R, l'exponentielle de x est supérieure ou égale à 1 plus x. Nous utilisons le fait que la fonction exponentielle est convexe pour montrer que sa courbe se situe au-dessus de sa tangente en 0, qui est x plus 1. Par conséquent, pour tout x dans R, l'exponentielle de x est supérieure ou égale à 1 plus x.
Enfin, la dernière inégalité à démontrer est que pour tout x dans (-1, +∞), le logarithme népérien de 1 plus x est inférieur ou égal à x. En utilisant le fait que la fonction ln de 1 plus x est concave, nous montrons que sa courbe se situe en-dessous de sa tangente en 0, qui est x. Ainsi, pour tout x dans (-1, +∞), ln de 1 plus x est inférieur ou égal à x.
Ces inégalités sont classiques et importantes à maîtriser, et vous les utiliserez fréquemment en prépa et même dans votre vie.