logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Changement variable classique

Dans cette vidéo, Matisse de Studio résout une équation différentielle d'ordre 2 en utilisant un changement d'inconnu. L'équation à résoudre est AX2Y2 + BX' + CY = 0, avec A, B et C étant des réels et A étant différent de 0 pour X entre 0 et l'infini. Cela pose un problème car notre méthode habituelle ne fonctionne pas avec cette équation. Cependant, nous sommes guidés vers une solution. On nous demande de vérifier que si Y est deux fois dérivable sur 0 et plus infini, alors Z est deux fois dérivable sur R, et vice versa. On prouve cela en utilisant la composition et les théorèmes généraux. Ensuite, nous effectuons le changement d'inconnu en remplaçant Y par Z ln X dans l'équation différentielle. Après simplification, nous obtenons une équation linéaire du second ordre à coefficients constants. C'est une équation que nous sommes capables de résoudre. Nous résolvons l'équation homogène et trouvons une solution générale. En composant cette solution avec ln X, nous trouvons l'ensemble des solutions de l'équation différentielle initiale. En résumé, grâce à un changement d'inconnu, nous avons transformé l'équation différentielle en une équation linéaire du second ordre à coefficients constants, que nous savons résoudre. Nous avons utilisé des techniques de composition pour trouver l'ensemble des solutions de l'équation initiale.

Contenu lié