- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Aire entre 2 Courbes
Dans ce cours, nous allons apprendre à calculer "R" entre deux courbes. Les courbes données sont f(x) = x et g(x) = x², et nous voulons calculer "R" entre elles, dans l'intervalle de x = 0 à x = 1. Pour effectuer ce calcul, nous devons tout d'abord trouver les primitives des deux fonctions f et g. Les primitives de f(x) = x et g(x) = x² sont respectivement F(x) = x²/2 et G(x) = x³/3. Ensuite, nous utilisons le théorème fondamental du calcul intégral.
Visuellement, l'R se situe sous la courbe entre f et g. Dans notre cas, nous voulons prendre une valeur positive pour l'R. Donc, nous calculons la différence entre la fonction qui est supérieure à l'autre sur l'intervalle donné. Dans notre cas, f est toujours supérieure à g pour tous les x de 0 à 1. Donc, nous calculons l'intégrale de f(x) - g(x) de 0 à 1 pour obtenir la valeur de notre R.
En appliquant les propriétés de l'intégrale, nous obtenons l'intégrale de 0 à 1 de f(x) - l'intégrale de 0 à 1 de g(x). Nous avons déjà calculé ces intégrales et les avons appelées I1 et I2. En utilisant le théorème fondamental du calcul intégral, nous trouvons que I1 = 1/2 et I2 = 1/3. Donc, la différence entre 1/2 et 1/3 est égale à 1/6. Donc, l'R entre les deux courbes, dans l'intervalle de 0 à 1, est égal à 1/6. C'est ainsi que l'on calcule l'R entre deux courbes.