- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Exemple d’anneau
Dans ce cours, Corentin explique comment démontrer qu'un ensemble Q n'admet pas d'autres sous-corps que lui-même. Pour cela, il utilise une double inclusion. Dans un premier temps, il montre que Q est inclus dans le sous-corps K en invoquant le fait que K est un sous-corps de Q, donc 0, 1 et tous les entiers naturels appartiennent à K. Il utilise également la stabilité de K par les opérations de plus et de passage à l'opposé pour montrer que l'ensemble des entiers relatifs est inclus dans K. Ensuite, en prenant un X appartenant à Q privé de 0, il démontre que ce X appartient à K en utilisant une écriture de X comme une fraction avec le numérateur P appartenant à Z et le dénominateur Q appartenant à N*. Puisque K est un corps, 1/Q appartient à K, ce qui implique que X appartient à K par stabilité par le produit. Ainsi, il montre que tous les éléments de Q privé de 0 appartiennent à K, en plus de 0 qui appartient déjà à K. Par conséquent, Q est inclus dans K. En combinant cette inclusion avec l'inclusion réciproque qui découle du fait que K est un sous-corps, on conclut que K est égal à Q. Ainsi, Q n'admet pas d'autres sous-corps que lui-même.