logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
    • Concours et examens US
    • Concours et examens Français
      • Tescia
      • Admission Polytechnique
    • Bac et examens étrangers
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
    • Concours et examens US
    • Concours et examens Français
      • Tescia
      • Admission Polytechnique
    • Bac et examens étrangers

Solutions d'une équation de degré 5 !

Le cours aborde la résolution d'une équation de degré 5 qui consiste à trouver le nombre de solutions réelles en fonction d'un paramètre p. L'exercice nécessite une analyse approfondie de la fonction x^5 - 5x - p. Un graphe de la fonction est présenté pour illustrer les différentes valeurs de p et le nombre de solutions correspondant. En utilisant le théorème des valeurs intermédiaires, le professeur détermine différentes conditions pour le nombre de racines en fonction de la valeur de p. Il trouve qu'il y a une unique racine entre 1 et l'infini pour p>4, deux racines pour p=4, et trois racines pour -4<p<4. Pour p<-4, il y a à nouveau une unique racine. En résumé, l'ensemble des solutions de l'équation dépend de la valeur de p et peut être déterminé en analysant les différentes conditions. Le professeur encourage les étudiants à poser des questions et conclut en indiquant que d'autres exercices du même type seront présentés dans des vidéos futures.

Contenu lié