logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
      • Oxford Imperial MAT
      • Cambridge
    • Concours et examens US
    • Concours et examens Français
    • Bac et examens étrangers
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
      • Oxford Imperial MAT
      • Cambridge
    • Concours et examens US
    • Concours et examens Français
    • Bac et examens étrangers

cosⁿ(x) et du sinⁿ(x) dans une équation ?

Le cours traite de la résolution d'une équation et de la trigonométrie. L'exercice consiste à déterminer le nombre de solutions d'une équation donnée. On factorise l'équation et on obtient deux termes possibles : cosinus puissance n de x = 0 et 1 + cosinus puissance n de x = 0. On résout ces équations en fonction des valeurs de n. Pour cosinus puissance n de x = 0, on obtient deux solutions : pi/2 et 3pi/2. Pour 1 + cosinus puissance n de x = 0, on détermine si cela peut être égal à -1 en fonction de la parité de n. Si n est pair, cela n'est pas possible, donc on ne retient pas ces solutions. Si n est impair, cela est possible et on obtient une solution : x = pi. Donc, si n est impair, il y a trois solutions, sinon il y en a deux. Ainsi, on démontre que la réponse est D ou E. Cette stratégie permet de gagner du temps lors de l'examen.

Contenu lié