logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
      • Dénombrement
      • Variables aléatoires
      • Concentration et Loi des Grands Nombres
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
      • Dénombrement
      • Variables aléatoires
      • Concentration et Loi des Grands Nombres
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Avec et sans ordre de tirage

Le cours explique comment déterminer le nombre de mains possibles de 5 cartes dans un jeu de 32 cartes avec certaines configurations spécifiques. Pour commencer, il est expliqué qu'un carré d'As fixe déjà 4 cartes sur les 5. Ensuite, il est précisé qu'il y a 28 mains possibles avec le carré d'As, ce qui est considéré comme rare. Ensuite, il est abordé le cas des 5 cartes de la même couleur, en précisant qu'il y a 4 couleurs dans le jeu de 32 cartes et qu'il faut sélectionner 5 cartes parmi 8 de la même couleur. En multipliant cela par 4, on obtient le nombre total de mains possibles avec les cartes de la même couleur. Ensuite, il est expliqué comment déterminer le nombre de mains avec exactement une paire. Il faut choisir les 2 cartes de la paire parmi 30 cartes restantes, puis choisir les 3 cartes restantes parmi les autres cartes du jeu sans choisir les mêmes cartes que celles de la paire. Ce raisonnement est fait pour chaque hauteur possible (3, 4, 5, 6, 7, 8, 9, 10, Valet, Dame, Roi, As), ce qui donne le nombre total de mains possibles avec exactement une paire. Le raisonnement consiste à diviser en deux à chaque étape, en fixant une variable et en calculant le nombre de possibilités pour chaque variable.

Contenu lié