Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Intégration par parties 1
Dans cette vidéo, Matisse de Studio explique comment résoudre deux intégrales en utilisant la méthode d'intégration par parties. Pour la première intégrale, il calcule l'intégrale de 0 à 1 de x exponentielle x dx en choisissant x comme sa fonction u et exponentielle de x comme sa fonction v'. Ensuite, il calcule les fonctions correspondantes et vérifie les hypothèses nécessaires avant d'appliquer le théorème d'intégration par parties pour trouver la réponse de l'intégrale, qui est égale à 1. Pour la deuxième intégrale, Matisse utilise la même méthode en choisissant ln de x comme sa fonction u et x carré comme sa fonction v'. Il calcule les fonctions correspondantes, vérifie les hypothèses et applique le théorème d'intégration par parties pour trouver la réponse de cette intégrale, qui est égale à 2 neuvième de e3 plus 1 neuvième. Il souligne également l'importance de bien retenir la syntaxe d'intégration par parties et de vérifier les hypothèses pour éviter les erreurs.