logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
      Terminale
    • Bac Maths
      • Géométrie
      • Probabilités
      • BAC 2021
      • BAC 2024
    • Bac Physique-Chimie
    • MPSI/PCSI
    • Bac Maths
    • Bac Physique-Chimie
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
      Terminale
    • Bac Maths
      • Géométrie
      • Probabilités
      • BAC 2021
      • BAC 2024
    • Bac Physique-Chimie
    • MPSI/PCSI
    • Bac Maths
    • Bac Physique-Chimie
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Suites et fonctions - Centres étrangers 2022

Dans cet exercice de BAC, nous devons étudier les exponentielles et les suites. Nous commençons par trouver les limites de la fonction h(x) = e^x - x. On détermine les limites lorsque x tend vers plus ou moins l'infini. En utilisant la méthode de factorisation, nous trouvons que la limite de h en plus l'infini est plus l'infini et la limite de h en moins l'infini est plus l'infini. Ensuite, nous analysons les variations de h en utilisant sa dérivée. Nous trouvons que h est décroissante pour x négatif et croissante pour x positif. Nous dressons un tableau de variations en utilisant les limites trouvées précédemment. Ensuite, nous étudions la fonction f(x) = e^x et trouvons son équation de tangente au point d'abscisse 0. En utilisant la dérivée de f, nous trouvons que la tangente a pour équation y = x + 1. Ensuite, nous introduisons la suite un = e^(1/n) - 1/n - 1 et déterminons sa limite lorsque n tend vers plus l'infini. En utilisant les propriétés des limites, nous trouvons que la limite de un est 0. Enfin, nous démontrons que pour tout entier naturel non nul n, un+1 - un = h(1/(n+1)) - h(1/n). En utilisant les résultats précédents sur les variations de h, nous trouvons que la suite un est décroissante. En utilisant un tableau de valeurs, nous trouvons la plus petite valeur de n pour laquelle l'écart entre la tangente et la courbe de f est inférieur à 0,01. En lisant dans le tableau, nous trouvons que n = 8 est la valeur recherchée.

Contenu lié