• Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
      Terminale
    • Physique
      • Mouvements et intéractions
      • Ondes et signaux
      • Conversions et transferts d'énergie
    • Chimie
    • MPSI/PCSI
    • Physique
    • Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
      Terminale
    • Physique
      • Mouvements et intéractions
      • Ondes et signaux
      • Conversions et transferts d'énergie
    • Chimie
    • MPSI/PCSI
    • Physique
    • Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Lampe rechargeable

Dans cette vidéo, Mathis présente une lampe rechargeable à base d'un système capacitif. Cette lampe utilise l'énergie mécanique du mouvement pour se recharger et stocke cette énergie dans un condensateur de capacité de 4 Farad. Une fois le condensateur chargé, la tension à ses bornes est de 5,5 volts. Un mouvement de 30 secondes permet à la lampe de fonctionner pendant quelques minutes. Pour étudier le comportement en décharge du condensateur, celui-ci est associé à un conducteur ohmique de résistance 220 ohm et à un interrupteur. Lorsque l'interrupteur est fermé, la tension aux bornes de la lampe est de 2 volts. En utilisant ces données, Mathis schématise le circuit électrique de décharge du condensateur. Ensuite, il détermine l'expression du courant en fonction du temps en calculant la dérivée temporelle de la tension aux bornes du condensateur. Cela permet de trouver que l'intensité du courant est égale à C/tau * (E - U_seuil) * exp(-t/tau), où C est la capacité du condensateur, tau est la constante de temps du circuit RC, E est la tension initiale du condensateur et U_seuil est la tension seuil de la LED. Mathis explique ensuite que pour que la LED fonctionne correctement, le courant doit être supérieur à 10 mA. Il en déduit une inéquation qui permet de trouver la durée de fonctionnement prévue. En résolvant cette inéquation, il obtient une condition sur le temps qui doit être inférieur à -tau * ln(tau * I_min / (c * (E - U_seuil))), où I_min est le courant minimal de fonctionnement, c est la capacité du condensateur et E - U_seuil est le facteur d'exponentielle de la formule précédente. En effectuant les calculs numériques, Mathis trouve que la durée d'utilisation de la lampe est de 409 secondes. Il conclut en soulignant la manipulation mathématique complexe de cet exercice, mais aussi l'importance de comprendre les concepts physiques et électroniques sous-jacents.

Contenu lié