- Tous les sujets
- Maths
- Physique-Chimie
- Physique
- Mouvements et intéractions
- Ondes et signaux
- Conversions et transferts d'énergie
- Chimie
- Physique
- Chimie
TerminaleMPSI/PCSI - Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Physique-Chimie
- Physique
- Mouvements et intéractions
- Ondes et signaux
- Conversions et transferts d'énergie
- Chimie
- Physique
- Chimie
TerminaleMPSI/PCSI - Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Caractéristique d’une pile
Dans cette vidéo, il est question de la caractéristique d'une pile associée à un condensateur déchargé. La tension UC de ce circuit est donnée par l'expression UC = E*(1 - e^(-1/RC)), où E est la force électromotrice de la pile.
Pour déterminer la valeur de E, on peut simplifier cette expression en regardant la valeur de la tension UC à l'infini. En observant le graphique, on constate que la tension converge vers une valeur particulière, qui est environ 8,8 volts. Donc E est égale à 8,8 volts.
Ensuite, il est demandé de déterminer graphiquement le temps caractéristique de la charge du condensateur. Le temps caractéristique correspond au temps auquel la tension atteint 0,63 fois sa valeur maximale. En repérant cette valeur sur le graphique, on trouve que le temps caractéristique est d'environ 0,6 millisecondes.
Enfin, on nous demande de déduire la résistance interne de la pile. En utilisant la relation Tau = RC, où Tau est le temps caractéristique et C est la capacité du condensateur, on peut trouver que la résistance interne R est égale à Tau/C, soit environ 6 Ohm.
En conclusion, dans cette vidéo, on a utilisé l'expression de la tension UC et le graphique de l'évolution de cette tension pour déterminer la valeur de la force électromotrice de la pile, le temps caractéristique et la résistance interne de la pile.