logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
      Terminale
    • Bac Maths
    • Bac Physique-Chimie
      • BAC 2021
      • BAC 2022
    • MPSI/PCSI
    • Bac Maths
    • Bac Physique-Chimie
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
      Terminale
    • Bac Maths
    • Bac Physique-Chimie
      • BAC 2021
      • BAC 2022
    • MPSI/PCSI
    • Bac Maths
    • Bac Physique-Chimie
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Pile à méthanol (2)

Dans cette vidéo, Obaldesudéo aborde un problème ouvert sur la pile au méthanol qui a été donné au bac l'année dernière. Dans la première partie de l'exercice, Obaldesudéo explique le fonctionnement de la pile au méthanol. Ensuite, il aborde le cas où des élèves veulent faire fonctionner un petit ventilateur avec cette pile au méthanol en utilisant deux piles en série. L'intensité du courant mesurée est de 450 mA et le rendement de chaque pile est de 70%. Toutes ces informations seront utiles pour la partie B de l'exercice. La première question de cette partie demande de calculer la capacité électrique théorique de la pile au méthanol étudiée dans la partie A. Pour cela, Obaldesudéo rappelle que la capacité électrique théorique est le nombre de moles échangées lors de la réaction, multiplié par la constante de Faraday (9,65 x 10,4 coulombs par mole). Dans le cas de la réaction avec le méthanol, il y a 6 moles d'électrons échangés par mole de méthanol. Donc la capacité électrique théorique est égale à 6 fois la quantité de matière en méthanol introduite dans la pile, multipliée par la constante de Faraday. En faisant le calcul, on obtient une capacité électrique théorique de 16,9 x 10^3 coulombs. Ensuite, Obaldesudéo aborde la question ouverte où les élèves souhaitent faire fonctionner leur ventilateur pendant au moins une heure. Pour répondre à cette question, Obaldesudéo explique qu'il faut prendre en compte la capacité électrique réelle de la pile. Pour passer de la capacité électrique réelle à la capacité électrique théorique, il faut utiliser le rendement de la pile qui est de 70%. Donc la capacité électrique réelle est égale au rendement fois la capacité électrique théorique. Sachant qu'il y a deux piles en série, la capacité électrique réelle est donc deux fois la capacité électrique réelle de la pile A. À partir de la capacité électrique réelle, on peut calculer le temps de fonctionnement de la pile en utilisant la formule : capacité électrique réelle = courant multiplié par le temps de fonctionnement. En connaissant la capacité électrique réelle, le courant et en utilisant les chiffres significatifs, on peut trouver le temps de fonctionnement de la pile en secondes. En utilisant ces informations, Obaldesudéo donne la réponse à la question ouverte. En faisant les calculs, on obtient un temps de fonctionnement de la pile de 5,9 heures. Donc les élèves pourront faire fonctionner leur ventilateur pendant largement plus d'une heure. Obaldesudéo conclut la vidéo en invitant les spectateurs à poser des questions en commentaire et en donnant rendez-vous pour une prochaine vidéo.

Contenu lié