- All subjects
- All subjects
Parité
Dans cette vidéo, Corentin aborde le concept des fonctions paires et impaires. Il présente quatre fonctions différentes: un polynôme de degré 4, une fraction rationnelle, une somme de fonctions trigonométriques et une autre fonction trigonométrique.
Il commence par rappeler la définition d'une fonction paire, qui est vérifiée lorsque pour tout élément x dans son domaine de définition, x est également dans le domaine de définition et f (-x) = f (x). De même, une fonction est impaire si la première condition est vérifiée et f (-x) = - f (x).
En analysant le premier polynôme, il remarque que son domaine de définition est ℝ (l'ensemble des nombres réels) et que pour tout x dans ℝ, l'opposé de x est également dans ℝ. Ainsi, la première condition est vérifiée et en calculant f (-x), il trouve que f (-x) = f (x). Donc, cette fonction est paire.
Ensuite, il passe à la deuxième fonction, une fraction rationnelle. Il constate que -1 appartient au domaine de définition de la fonction, mais que 1 n'y appartient pas, car il annule le dénominateur. Par conséquent, cette fonction n'est ni paire ni impaire, car la première condition n'est pas vérifiée.
Il poursuit avec la troisième fonction, une somme de fonctions trigonométriques. Il rappelle que la somme de deux fonctions paires est paire et que la somme de deux fonctions impaires est impaire. En analysant les fonctions individuellement, il remarque que le cosinus de 2x est impaire et que la tangente de x est également impaire. Par conséquent, selon le rappel, la fonction f₁₋₃ associée au cosinus de 2x plus la tangente de 2x est impaire.
Enfin, il aborde la dernière fonction, f₁₋₄, qui est la somme du cosinus de 2x et du sinus de 2x. Il constate que f₁₋₄ (π/4) = cosinus (π/4) + sinus (π/4) = 1,5, mais que f₁₋₄ (-π/4) = cosinus (-π/4) + sinus (-π/4). Étant donné que le cosinus est pair et que le sinus est impaire, le terme avec le cosinus peut être simplifié et il conclut que f₁₋₄ (-π/4) = 0. Ainsi, f₁₋₄ n'est pas paire ni impaire.
En résumé, le polynôme de degré 4 est paire, la fraction rationnelle n'est ni paire ni impaire, la somme de fonctions trigonométriques est impaire et la somme du cosinus de 2x et du sinus de 2x n'est ni paire ni impaire.