logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Électrode

Aujourd'hui, nous allons parler des électrodes et faire un exercice pratique sur le sujet. Les électrodes que nous avons sont planes, parallèles et soumises à une tension U positive. Tout d'abord, nous devons déterminer comment orienter le champ électrique dans ce dispositif. Pour ce faire, nous savons que le champ électrique descend les potentiels. En utilisant la formule E = -∇V, qui lie le champ électrique au potentiel, nous pouvons voir que si la tension U va dans une certaine direction, le champ électrique va dans la direction inverse. Ainsi, E = -U/D, si le champ est uniforme. Ensuite, nous devons calculer la vitesse à laquelle un proton atteindra l'autre électrode, en partant de l'électrode Z = 0. Pour cela, nous allons raisonner en termes de potentiel, qui est essentiellement une forme d'énergie potentielle. En utilisant le théorème énergétique, nous pouvons établir que le potentiel en Z = 0 est QU, où Q est la charge du proton. Le potentiel en D est nul, car c'est le point de référence où le potentiel est considéré comme étant nul. En utilisant le théorème de l'énergie mécanique, nous pouvons équilibrer l'énergie potentielle en Z = 0 (QU) avec l'énergie cinétique en D (1.5mv², où m est la masse du proton et v est sa vitesse). En résolvant cette équation, nous obtenons que la vitesse v est égale à la racine carrée de (2QU/m). Cette formule est souvent utilisée dans les problèmes d'accélération pour calculer la vitesse obtenue en appliquant une différence de potentiel entre deux points. En résumé, dans cet exercice sur les électrodes planes et parallèles soumises à une tension positive, nous avons déterminé l'orientation du champ électrique et calculé la vitesse à laquelle un proton atteint l'autre électrode à partir de l'électrode Z = 0. La vitesse est donnée par la formule racine de (2QU/m).

RELATED