logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

BAC : Décharge d’un condensateur

Dans cette vidéo, nous étudions la décharge d'un condensateur. Le condensateur est initialement chargé sous une tension U0 de 10V. L'intensité du courant traversant le condensateur est notée I et la charge positive de l'armature A est notée Q. Pour commencer, nous établissons la relation entre I et UC, la différence de potentiel aux bornes du condensateur. D'après la relation tension-courant pour un condensateur, on a I(t) = C * dUC/dt. Ensuite, nous montrons que l'équation différentielle régissant l'évolution de UC est donnée par α * UC + dUC/dt = 0, avec α = 1/RC où R est la résistance et C la capacité du condensateur. Nous trouvons ensuite la solution de cette équation différentielle, qui est UC(t) = U0 * exp(-α * t). Nous dessinons le graphique de cette solution, montrant que la tension à l'infini est nulle. Nous déterminons ensuite le temps caractéristique de décharge du condensateur, qui est égal à RC. En utilisant ce temps caractéristique et la résistance de 330 kOhm, nous calculons la capacité du condensateur qui est de 0,27 µF. Enfin, nous montrons que l'intensité du courant est égale à -U0/R ou à -t/RC, en utilisant l'expression de UC obtenue précédemment. Nous calculons la valeur de UC et I à t = 0,5 secondes et concluons que le condensateur est déchargé à cet instant. Cet exercice nous permet d'appliquer les différentes méthodes vues en cours sur les circuits RC. Il n'y a pas de pièges particuliers, il suffit de bien comprendre les concepts et d'appliquer les formules appropriées.

RELATED