Learn
Pricing
Learn English
Entreprise
News & Blog
Login
Free trial
All subjects
All subjects
Grouping
Home
/
BCPST
/
Révisions Maths lycée
/
Analyse Terminale
/
Définition et Propriétés
/
Exercice
Révisions Maths lycée
Analyse Terminale
Level 3
1.
Montrer que
∀
(
a
,
b
)
∈
R
+
∗
,
l
n
(
a
b
)
=
l
n
(
a
)
+
l
n
(
b
)
,
l
n
(
1
a
)
=
−
l
n
(
a
)
,
l
n
(
a
b
)
=
l
n
(
a
)
−
l
n
(
b
)
.
2.
Simplifier la somme
S
=
∑
n
=
1
100
l
n
(
n
n
+
1
)
.
1.\text{ Montrer que }\forall (a,b)\in\mathbb{R}^*_+,\\ln(ab)=ln(a)+ln(b),\\ln(\frac{1}{a})=-ln(a),\\ln(\frac{a}{b})=ln(a)-ln(b).\\ \ \\2.\text{ Simplifier la somme}\\S=\sum\limits_{n=1}^{100}ln(\frac{n}{n+1}).
1.
Montrer que
∀
(
a
,
b
)
∈
R
+
∗
,
l
n
(
ab
)
=
l
n
(
a
)
+
l
n
(
b
)
,
l
n
(
a
1
)
=
−
l
n
(
a
)
,
l
n
(
b
a
)
=
l
n
(
a
)
−
l
n
(
b
)
.
2.
Simplifier la somme
S
=
n
=
1
∑
100
l
n
(
n
+
1
n
)
.
START THE EXERCICE
WATCH THE SOLUTION
Learn
Contenu
New
Exercises
MCQs
Flashcards
Games
Tests
Quick link
Login / Sign-up
Pricing
News & Blog
Live sessions
Download the app
Contact
More
For parents
Exam Prep
Resources
Referral offer
Privacy policy
Terms
FR
-
EN
I want to learn English with AI avatars
Learn English with your AI Avatar
How to learn English alone ?
Learning English: comparison between Private Tutors vs AI Avatar Tutors
Learning English as an adult: why is it harder ?
The secrets of learning English quickly