Learn
Pricing
Learn English
Entreprise
News & Blog
Login
Free trial
All subjects
All subjects
Grouping
Home
/
BCPST
/
Révisions Maths lycée
/
Analyse Terminale
/
Fonctions Cos et Sin
/
Exercice
Révisions Maths lycée
Analyse Terminale
Level 4
Calculer les d
e
ˊ
riv
e
ˊ
es des
fonctions sur
I
:
a
)
f
(
x
)
=
cos
(
1
+
x
2
)
I
=
R
b
)
f
(
x
)
=
sin
(
−
5
x
+
π
4
)
I
=
R
c
)
f
(
x
)
=
cos
(
2
x
)
−
x
sin
(
2
x
)
+
x
I
=
[
3
;
+
∞
[
d
)
f
(
x
)
=
e
c
o
s
x
I
=
R
\text{Calculer les dérivées des}\\\text{fonctions sur }I\text{ :}\\ \ \\a)\;f(x)=\cos(\sqrt{1+x^2})\quad I=\R\\ \ \\b)\;f(x)=\sin(-5x+\frac{\pi}{4})\quad I=\R\\ \ \\c)\;f(x)=\large\frac{\cos(2x)-x}{\sin(2x)+x}\normalsize\quad I=[3;+\infty[\\ \ \\d)\;f(x)=e^{cosx}\quad I=\R
Calculer les d
e
ˊ
riv
e
ˊ
es des
fonctions sur
I
:
a
)
f
(
x
)
=
cos
(
1
+
x
2
)
I
=
R
b
)
f
(
x
)
=
sin
(
−
5
x
+
4
π
)
I
=
R
c
)
f
(
x
)
=
s
i
n
(
2
x
)
+
x
c
o
s
(
2
x
)
−
x
I
=
[
3
;
+
∞
[
d
)
f
(
x
)
=
e
cos
x
I
=
R
START THE EXERCICE
WATCH THE SOLUTION
Learn
Contenu
New
Exercises
MCQs
Flashcards
Games
Tests
Quick link
Login / Sign-up
Pricing
News & Blog
Live sessions
Download the app
Contact
More
For parents
Exam Prep
Resources
Referral offer
Privacy policy
Terms
FR
-
EN
I want to learn English with AI avatars
Learn English with your AI Avatar
How to learn English alone ?
Learning English: comparison between Private Tutors vs AI Avatar Tutors
Learning English as an adult: why is it harder ?
The secrets of learning English quickly