- All subjects
Maths Spé
Analyse
Level 3
Le but de cet exercice est d’eˊtudier certaines solutions sur R de l’eˊquationdiffeˊrentielle :y′(x)=∣y(x)−x∣et de donner l’allure des courbescorrespondantes (encore appeleˊes courbes inteˊgrales de cette eˊquation). 1. Eˊtudier les solutions y telles quepour tout x∈R,y(x)⩾xet donner l’allure des courbesinteˊgrales. 2. Eˊtudier de meˆme les courbesinteˊgrales qui restent dans le demi-plan d’eˊquationy⩽x.
START THE EXERCICE
WATCH THE SOLUTION
Maths Spé
Analyse
Level 3
On cherche aˋ reˊsoudre l’eˊquation (E) y′=y+ex 1. Montrer que la fonction g(x)=xexest solution de l’eˊquation (E). 2.(a) Montrer l’eˊquivalence suivante :une fonction f est solution de (E) si etseulement si f−g est solution del’eˊquation y′=y(b) En deˊduire la forme de la fonctionf−g, puis celle de f 3. Deˊterminer la fonction solution de(E) qui prend en 1 la valeur 2 .
START THE EXERCICE
WATCH THE SOLUTION
Maths Spé
Analyse
Level 4
Pour eˊtudier une population N, lele modeˋle de Malthus consiste aˋ eˊcrireque le taux de variation de lapopulation veˊrifie : N′(t)=βN(t)−δN(t) ouˋ β est le taux de fertiliteˊ (nombre denaissances par uniteˊ de temps et parindividu) et δ le taux de mortaliteˊ(nombre de deˊceˋs par uniteˊ de tempset par individu), que l’on supposeconstants. 1. En notant N0 la population de deˊpart,exprimer N en fonctuion de β de δet de N0 2. Si la fertiliteˊ l’emporte sur la morta-liteˊ, c’est-aˋ-dire si β>δ, le modeˋlepreˊvoit une croissance « exponen-tielle ».Justifier cette expression. 3. Si, au contraire, β<δ preˊciser letype de croissance du modeˋle.
START THE EXERCICE
WATCH THE SOLUTION