- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI - Prépa Examens
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI - Prépa Examens
Solutions Particulières
Les équations différentielles non homogènes sont de la forme Y' = AY + F, où A et F sont des constantes quelconques. La solution de cette équation consiste en la somme d'une solution homogène (Y' = AY) et d'une solution particulière (U' = AU + F). L'ensemble des solutions est donc donné par U + V, avec U solution particulière et V solution homogène. Dans la plupart des cas, on cherche U en s'inspirant de la fonction F. Par exemple, si F est linéaire (3X + 2), on cherche une solution affine (AX + B), et si F est quadratique, on cherche une solution quadratique (AX² + BX + C). On peut appliquer cette méthode de manière systématique, en posant U de la même famille que F. Pour les équations non homogènes avec une fonction constante, la solution particulière est simplement U = -B/1. Cette solution constante est ensuite added to the general solution. Il est important de bien comprendre cette méthode pour résoudre les exercices.