logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes

Introduction

Dans cette vidéo d'introduction sur les intégrales, nous allons présenter les définitions et les propriétés de l'intégrale. Tout au long du chapitre, nous allons calculer des R sous des courbes. Dans ce sous-chapitre, nous posons les bases pour les fonctions continues et nous examinons les fonctions positives et négatives. Nous commençons par un exemple simple. Si nous avons une fonction constante avec une hauteur de 2 et une plage de 0 à 3, l'R sous la courbe est égal à 6, ce qui est représenté par un rectangle de largeur 3 et de hauteur 2. Nous pouvons faire la même chose avec une fonction affine de pente 1, qui est représentée par un triangle rectangle isocèle avec une base de 3 et une hauteur de 3. L'R est donc égal à 9 demi (9/2). Vous pourriez vous demander pourquoi consacrer un chapitre à cela. En réalité, nous aurons des fonctions plus complexes et nous utiliserons cette approximation simple du rectangle pour comprendre comment fonctionne l'R sous une fonction plus courbe et complexe. Ainsi, nous pourrons dire que cela équivaut à l'R d'une somme de rectangles, du moins approximativement. Les rectangles auront une largeur (delta x) et une hauteur (f de x) en fonction du point considéré. Pour être plus précis, ce symbole "S" stylisé représente une somme entre a et b. L'R est essentiellement égal à la somme des rectangles lorsque le nombre de rectangles devient infini, c'est-à-dire lorsque la somme atteint une R complète plutôt qu'une approximation. Nous utilisons également la notation "dx" pour représenter une largeur infiniment petite lorsque le nombre de rectangles devient très grand. Dans ce sous-chapitre, nous allons aborder les définitions de l'intégrale pour les fonctions continues positives et les fonctions de signes quelconques. Nous utiliserons des encadrements et des intuitions graphiques pour estimer les intégrales. Les méthodes abordées seront le calcul de l'R et l'estimation de l'intégrale à l'aide de rectangles. Bon courage pour ce chapitre, et je vous retrouve dans la prochaine vidéo. N'hésitez pas à poser vos questions dans la FAQ, et à bientôt !

Contenu lié