- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Analyse Terminale
- Géométrie Terminale
- Vecteurs et droites
- Produit scalaire dans l'espace
- Représentations paramétrique et cartésienne
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI - Prépa Examens
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Analyse Terminale
- Géométrie Terminale
- Vecteurs et droites
- Produit scalaire dans l'espace
- Représentations paramétrique et cartésienne
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI - Prépa Examens
Trouver un plan avec 3 points
Le cours explique comment trouver l'équation cartésienne d'un plan passant par un point donné avec un vecteur normal donné. Il présente deux méthodes pour cela. La première méthode consiste à utiliser l'équation générale du plan, qui est de la forme ax + by + cz + d = 0, en utilisant les coordonnées du vecteur normal (abc). Cette méthode est utilisée de manière pratique sans démonstration. La deuxième méthode est préférée par l'auteur car elle repose sur une démonstration plus complète. Elle utilise le concept de vecteur normal orthogonal au plan. Un point M appartiendra au plan si et seulement si le vecteur GM est orthogonal au vecteur normal. En utilisant cette propriété, on peut écrire l'équation du plan en utilisant le produit scalaire entre le vecteur GM et le vecteur normal. Cette équation donne les mêmes résultats que la première méthode. L'auteur souligne l'importance de comprendre la définition profonde d'un vecteur normal, qui est d'être orthogonal à tous les vecteurs du plan.