- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Géométrie Terminale
- Probas Terminale
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Géométrie Terminale
- Probas Terminale
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
Modéliser par une somme (1)
Le cours traite de la modélisation probabiliste d'événements à l'aide de variables aléatoires. Il présente un jeu consistant à lancer un dé tétraédrique et un dé cubique, puis à étudier la somme de leurs résultats. Pour modéliser cette situation, deux variables aléatoires x et y sont proposées, où x représente le résultat du dé tétraédrique et y représente le résultat du dé cubique. La somme x + y est utilisée pour représenter la somme des résultats des deux dés. L'approche recommandée est de penser de manière logique et de considérer les résultats des dés comme les valeurs des variables aléatoires. Le cours propose également un bonus, qui consiste à calculer l'espérance de la somme x + y. En utilisant l'inégalité de l'espérance, il est démontré que l'espérance de x + y est égale à l'espérance de x plus l'espérance de y. Puisque les résultats des dés sont considérés comme équiprobables, les calculs sont effectués en multipliant les valeurs possibles par leurs probabilités respectives. Finalement, il est conclu que l'espérance de x + y est égale à 6, ce qui peut être interprété comme la moyenne des scores obtenus dans le jeu.