logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
      • Divisibilité et Congruences
      • PGCD
      • Théorèmes de Bézout et de Gauss
      • Nombres Premiers
    • Complexes Maths expertes
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
      • Divisibilité et Congruences
      • PGCD
      • Théorèmes de Bézout et de Gauss
      • Nombres Premiers
    • Complexes Maths expertes

√2 est irrationnel : démo

Dans cet exercice, nous démontrons que la racine de 2 est irrationnelle en utilisant le raisonnement par l'absurde. On suppose que la racine de 2 est rationnelle, c'est-à-dire qu'il existe deux entiers P et Q premiers entre eux tels que la racine de 2 est égale à P/Q. On effectue des calculs et nous arrivons à une contradiction. Nous concluons donc que la racine de 2 ne peut pas être écrite sous forme de P/Q où P et Q sont des entiers premiers entre eux. Par conséquent, la racine de 2 est irrationnelle.

Contenu lié