logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Calcul de limite infinie avec la définition (trouver un A)

Dans ce cours, nous abordons la définition formelle de la limite, qui peut être difficile à comprendre pour certains. Une limite signifie que ma fonction tend vers l'infini lorsque x devient infini. Peu importe la hauteur à laquelle je me fixe, il y aura toujours un moment où ma fonction dépassera cette hauteur. Pour illustrer cela, nous avons tracé une fonction racine carrée de x. Peu importe la hauteur m que je choisis, il y aura un réel a à partir duquel ma fonction sera toujours au-dessus de cette hauteur. Dans l'exemple donné, nous prenons f(x) égal à la racine carrée de x au carré moins 1. Une fois que nous comprenons cette définition, il s'agit simplement de montrer l'existence d'un a qui dépendra de m en résolvant l'inéquation f(x) > m. Dans notre cas, cela devient x carré > m + 1. En regardant la limite à l'infini, nous prenons la solution positive, mais n'oublions pas qu'il y a aussi une solution négative. Ainsi, nous trouvons que x doit être supérieur à racine carrée de m carré + 1. En utilisant l'implication inverse, nous montrons que si x est supérieur à ce a spécifique, alors f(x) sera supérieur à m. Nous avons donc utilisé la définition formelle de la limite pour montrer que la fonction tend vers l'infini lorsque x tend vers l'infini. Il est important de s'exercer avec différentes fonctions pour trouver la valeur de a qui convient. En fin de compte, il s'agit simplement de résoudre une équation.

Contenu lié