- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Croissance Comparée
Ce cours traite de l'utilisation des croissances comparables pour l'étude des limites avec le logarithme, ainsi que d'une question bonus sur la convexité. La fonction étudiée, f(x) = 3-x + 2ln(2x), est dérivable sur R étoile plus (l'ensemble des réels strictement positifs). La dérivée f'(x) = -1 + 2x, est positive pour x > 0 et inférieur à 2, et négative pour x > 2. La valeur de f(2) est égale à 1 + 2ln(2). Les limites de f(x) lorsque x tend vers plus l'infini et vers 0 sont respectivement moins l'infini et 0. Le tableau de variation complet de f montre un maximum en x = 2. En ce qui concerne la convexité, la dérivée seconde f''(x) = -1/x^2 est strictement négative sur R étoile plus, ce qui signifie que f est concave sur R étoile plus.