- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Concept et rédaction
Dans cette vidéo, le professeur explique le principe de la récurrence en mathématiques. Il rappelle que pour démontrer une propriété par récurrence, il faut montrer qu'elle est vraie pour un entier donné, puis que si elle est vraie pour cet entier, elle est également vraie pour l'entier suivant. En utilisant cette "pichenette initiale" et cette transmission, on peut prouver que la propriété est vraie pour tous les entiers.
Le professeur insiste sur l'importance de la rédaction dans la démonstration par récurrence. Il souligne qu'il faut toujours conclure la démonstration en affirmant que la propriété est vraie pour tout entier. Si cette conclusion n'est pas incluse, il est possible de perdre des points. Il recommande ainsi de donner une vision d'ensemble de la démonstration après avoir montré l'initialisation et la transmission de la propriété.
Le professeur mentionne également que dans environ 10% des exercices, la démonstration par récurrence commence avec un entier différent de zéro, ce qui peut dérouter les étudiants. Il donne l'exemple d'une suite récurrente où il faut prouver la propriété pour tout entier supérieur à 2, au lieu de 0.
Enfin, le professeur rappelle aux étudiants de se référer aux consignes spécifiques de leur professeur concernant la rédaction de la démonstration par récurrence, afin d'obtenir de bons résultats. Il invite également les étudiants à poser leurs questions dans la FAQ du cours pour obtenir des éclaircissements supplémentaires.