- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Asymptote oblique
L'asymptote oblique est étudiée dans ce cours. Il est précisé que cela faisait partie du programme de première, mais apparemment cela a changé. L'enseignant mentionne qu'il était habitué à faire des exercices sur les asymptotes obliques en première, et il recommande de les étudier car cela peut être demandé aux examens. Il explique que l'asymptote oblique est une droite de la forme AX plus B, vers laquelle la fonction se rapproche lorsque x tend vers plus ou moins l'infini.
Dans l'exercice présenté, il simplifie une fonction en différentes fractions pour rendre le calcul plus facile. Il souligne également l'importance de séparer les fractions pour simplifier l'analyse de la fonction. Il mentionne que certaines astuces peuvent être utiles, comme reconnaître une expression comme un carré parfait.
L'enseignant poursuit en étudiant les variations de la fonction. Il explique que la dérivabilité de la fonction est souvent un critère utilisé pour déterminer les variations. Il rappelle que les racines de x et la fonction valeur absolue sont des cas particuliers où la dérivabilité pose problème.
Il effectue des calculs pour déterminer la dérivée de la fonction et analyse les signes de celle-ci. Il note que la fonction est dérivable en dehors des racines et utilise ces informations pour compléter un tableau des variations.
Ensuite, il calcule les limites de la fonction aux extrémités de l'intervalle d'étude. Il remarque que les limites tendent vers l'infini et complète le tableau en indiquant les limites aux différents points. Il fait également une observation sur l'asymptote verticale en x=0.
Enfin, l'enseignant aborde la question des asymptotes dans l'exercice. Il conclut qu'il y a une asymptote verticale en x=0 mais pas d'asymptote horizontale car la limite de la fonction tend vers l'infini. Il mentionne ensuite la nécessité de déterminer les limites et d'étudier la position relative des deux expressions, en analysant le signe de leur différence. Il rappelle la simplicité de cet exercice grâce à la bonne expression utilisée.