- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Peu d'infos : trouver un max
Dans ce cours, on étudie une fonction continue f(x) sur R (l'ensemble des nombres réels) telle que sa limite lorsque x tend vers moins l'infini et sa limite lorsque x tend vers plus l'infini sont tous deux infinis. L'objectif est de démontrer que f admet un minimum sur R.
Nous commençons par remarquer intuitivement que si f tend vers l'infini lorsque x tend vers moins l'infini et plus l'infini, il doit exister un minimum à un certain moment, étant donné la continuité de f. Cependant, nous devons le démontrer de manière rigoureuse.
Pour ce faire, nous utilisons la propriété des limites. Nous choisissons un point a où nous appliquons les définitions des limites. Nous posons alors a = f(2,0). Grâce à cette démarche, nous pouvons trouver un nombre M1 strictement supérieur à 0 tel que si x est supérieur à M1, f(2, x) est supérieur à f(2,0) (limite en plus l'infini). De même, nous trouvons un nombre M2 strictement inférieur à 0 tel que pour tout x inférieur ou égal à M2, f(2, x) est supérieur ou égal à f(2,0) (limite en moins l'infini).
En choisissant a = f(2,0), nous savons que f(2,0) se situe entre M1 et M2. Nous avons ainsi défini notre segment [M1, M2] sur lequel f est continue et donc bornée. De plus, il existe un x0 tel que f(2, x0) soit supérieur à f(2, x0,0), ce qui signifie qu'il y a un minimum sur ce segment.
Puisque 0 appartient à [M1, M2], nous pouvons affirmer que quel que soit x en dehors de ce segment, f(2, x) est supérieur ou égal à f(2, x0,0). Ce résultat est obtenu grâce à la relation étroite étoile. Ainsi, nous sommes en mesure de dire que f(2, x) est supérieur ou égal à f(2, x0,0) sur tout R, excepté le segment [M1, M2].
En conclusion, f admet bien un minimum sur R. C'est la fin de cet exercice et à bientôt pour la suite !