- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Fonction Composée
Dans cette leçon, nous étudions une fonction composée et apprenons comment effectuer son étude et construire le tableau de variation. L'exemple donné est la fonction E2-1/ x². Nous identifions la fonction h comme étant l'exponentielle, définie et dérivable sur R, tandis que la fonction g est égale à -1/ x², définie et dérivable sur R* (sauf en 0). En composant ces deux fonctions, nous concluons que f est définie sur R*. Nous utilisons ensuite les formules de dérivation pour trouver que g' est égal à 2/ x³ (du même signe que x), et nous pouvons en déduire les variations de g et construire son tableau de variation. Les limites de g sont également calculées dans le tableau complet. Le sens de variation de F est ensuite étudié en analysant la variation de H. En utilisant les règles des sens de variation (croissant avec croissant donne croissant, etc.), nous concluons que F est décroissante sur R* - et croissante sur R* +. Les limites de F sont calculées en utilisant les limites de G et H par composition. Enfin, nous obtenons le tableau de variation complet de F. La fonction n'est pas définie en 0, ce qui ne peut pas être détecté sur une calculatrice. Cependant, dans le contexte de la continuité, nous pourrions étendre la fonction en définissant F(0) = 0. Une autre méthode aurait été d'étudier directement la fonction F en calculant sa dérivée, mais cette approche a été évitée dans cette leçon. Si vous avez des questions, n'hésitez pas à les poser sur la FAQ.