- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Dérivée d’une composée
Dans cette transcription de la vidéo, Corentin présente un exercice qui combine la dérivation et les polynômes. L'exercice consiste à montrer que la dérivée de la fonction f(x) est égale à une autre fonction Q(x), où f(x) est défini comme f(x) = P(1/(1-x)) * e^(1/(1-x)). On doit également trouver la relation entre les polynômes P(x) et Q(x).
Pour résoudre cet exercice, Corentin propose de dériver. La dérivée de f(x) est alors égale à P'(1/(1-x)) * (1-x)^2 * e^(1/(1-x)) + P(1/(1-x)) * (1/(1-x))^2 * e^(1/(1-x)). En factorisant par e^(1/(1-x)), on obtient le polynôme Q(1/(1-x)) = P'(1/(1-x)) + P(1/(1-x)) * (1/(1-x))^2. En posant Q(x) = P'(x) + P(x) * x^2, on obtient notre polynôme Q(x) et la relation entre Q et P.
Cet exercice est simple, mais il est souvent demandé lors des examens oraux et écrits car il est fréquemment utilisé.